aboutsummaryrefslogtreecommitdiff
path: root/planetwars-server/src
diff options
context:
space:
mode:
Diffstat (limited to 'planetwars-server/src')
-rw-r--r--planetwars-server/src/modules/ranking.rs114
1 files changed, 102 insertions, 12 deletions
diff --git a/planetwars-server/src/modules/ranking.rs b/planetwars-server/src/modules/ranking.rs
index df8e2d2..5d496d7 100644
--- a/planetwars-server/src/modules/ranking.rs
+++ b/planetwars-server/src/modules/ranking.rs
@@ -65,6 +65,7 @@ fn recalculate_ratings(db_conn: &PgConnection) -> QueryResult<()> {
db::ratings::set_rating(bot_id, rating, db_conn).expect("could not update bot rating");
}
let elapsed = Instant::now() - start;
+ // TODO: set up proper logging infrastructure
println!("computed ratings in {} ms", elapsed.subsec_millis());
Ok(())
}
@@ -157,11 +158,14 @@ fn estimate_ratings_from_stats(match_stats: HashMap<(i32, i32), MatchStats>) ->
p1_ix: player_tokenizer.tokenize(a_id),
p2_ix: player_tokenizer.tokenize(b_id),
score: stats.total_score / stats.num_matches as f64,
+ weight: stats.num_matches as f64,
})
}
let mut ratings = vec![0f64; player_tokenizer.player_count()];
- optimize_ratings(&mut ratings, &input_records);
+ // TODO: fetch these from config
+ let params = OptimizeRatingsParams::default();
+ optimize_ratings(&mut ratings, &input_records, &params);
ratings
.into_iter()
@@ -182,21 +186,43 @@ struct RatingInputRecord {
p2_ix: usize,
/// score of player 1 (= 1 - score of player 2)
score: f64,
+ /// weight of this record
+ weight: f64,
}
-fn optimize_ratings(ratings: &mut [f64], input_records: &[RatingInputRecord]) {
- // TODO: group this in a params struct
- let tolerance = 10f64.powi(-6);
- let learning_rate = 0.1;
- let max_iterations = 10000;
+struct OptimizeRatingsParams {
+ tolerance: f64,
+ learning_rate: f64,
+ max_iterations: usize,
+ regularization_weight: f64,
+}
+
+impl Default for OptimizeRatingsParams {
+ fn default() -> Self {
+ OptimizeRatingsParams {
+ tolerance: 10f64.powi(-8),
+ learning_rate: 0.1,
+ max_iterations: 10_000,
+ regularization_weight: 10.0,
+ }
+ }
+}
+
+fn optimize_ratings(
+ ratings: &mut [f64],
+ input_records: &[RatingInputRecord],
+ params: &OptimizeRatingsParams,
+) {
+ let total_weight =
+ params.regularization_weight + input_records.iter().map(|r| r.weight).sum::<f64>();
- for _iteration in 0..max_iterations {
+ for _iteration in 0..params.max_iterations {
let mut gradients = vec![0f64; ratings.len()];
// calculate gradients
for record in input_records.iter() {
let predicted = sigmoid(ratings[record.p1_ix] - ratings[record.p2_ix]);
- let gradient = predicted - record.score;
+ let gradient = record.weight * (predicted - record.score);
gradients[record.p1_ix] += gradient;
gradients[record.p2_ix] -= gradient;
}
@@ -204,8 +230,9 @@ fn optimize_ratings(ratings: &mut [f64], input_records: &[RatingInputRecord]) {
// apply update step
let mut converged = true;
for (rating, gradient) in ratings.iter_mut().zip(&gradients) {
- let update = learning_rate * gradient / input_records.len() as f64;
- if update > tolerance {
+ let update = params.learning_rate * (gradient + params.regularization_weight * *rating)
+ / total_weight;
+ if update > params.tolerance {
converged = false;
}
*rating -= update;
@@ -221,16 +248,79 @@ fn optimize_ratings(ratings: &mut [f64], input_records: &[RatingInputRecord]) {
mod tests {
use super::*;
+ fn is_close(a: f64, b: f64) -> bool {
+ (a - b).abs() < 10f64.powi(-6)
+ }
+
#[test]
fn test_optimize_ratings() {
let input_records = vec![RatingInputRecord {
p1_ix: 0,
p2_ix: 1,
score: 0.8,
+ weight: 1.0,
+ }];
+
+ let mut ratings = vec![0.0; 2];
+ optimize_ratings(
+ &mut ratings,
+ &input_records,
+ &OptimizeRatingsParams {
+ regularization_weight: 0.0,
+ ..Default::default()
+ },
+ );
+ assert!(is_close(sigmoid(ratings[0] - ratings[1]), 0.8));
+ }
+
+ #[test]
+ fn test_optimize_ratings_weight() {
+ let input_records = vec![
+ RatingInputRecord {
+ p1_ix: 0,
+ p2_ix: 1,
+ score: 1.0,
+ weight: 1.0,
+ },
+ RatingInputRecord {
+ p1_ix: 1,
+ p2_ix: 0,
+ score: 1.0,
+ weight: 3.0,
+ },
+ ];
+
+ let mut ratings = vec![0.0; 2];
+ optimize_ratings(
+ &mut ratings,
+ &input_records,
+ &OptimizeRatingsParams {
+ regularization_weight: 0.0,
+ ..Default::default()
+ },
+ );
+ assert!(is_close(sigmoid(ratings[0] - ratings[1]), 0.25));
+ }
+
+ #[test]
+ fn test_optimize_ratings_regularization() {
+ let input_records = vec![RatingInputRecord {
+ p1_ix: 0,
+ p2_ix: 1,
+ score: 0.8,
+ weight: 100.0,
}];
let mut ratings = vec![0.0; 2];
- optimize_ratings(&mut ratings, &input_records);
- assert!(sigmoid(ratings[0] - ratings[1]) - 0.8 < 10f64.powi(-6));
+ optimize_ratings(
+ &mut ratings,
+ &input_records,
+ &OptimizeRatingsParams {
+ regularization_weight: 1.0,
+ ..Default::default()
+ },
+ );
+ let predicted = sigmoid(ratings[0] - ratings[1]);
+ assert!(0.5 < predicted && predicted < 0.8);
}
}