1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
|
const std = @import("std");
const mecha = @import("mecha");
const print = std.debug.print;
pub fn solve(part: []u8, buffer: []u8, allocator: std.mem.Allocator) !void {
var lines = std.mem.splitScalar(u8, buffer, '\n');
var grid = std.ArrayList([]u8).init(allocator);
defer grid.deinit();
var x: i32 = 0;
var y: i32 = 0;
var row: usize = 0;
while (lines.next()) |line| : (row += 1) {
for (line, 0..) |element, i| {
if (element == '^') {
x = @intCast(i);
y = @intCast(row);
}
}
try grid.append(@constCast(line));
}
if (std.mem.eql(u8, part, "1")) {
try part1(&grid, x, y, allocator);
} else {
try part2(&grid, x, y, allocator);
}
}
fn locations(grid: *std.ArrayList([]u8), startx: i32, starty: i32, allocator: std.mem.Allocator) !std.AutoHashMap(std.meta.Tuple(&.{ i32, i32, i32, i32 }), void) {
var dirx: i32 = 0;
var diry: i32 = -1;
var x = startx;
var y = starty;
var history = try allocator.alloc(bool, grid.items.len * grid.items[0].len * 4);
defer allocator.free(history);
for (history) |*elem| {
elem.* = false;
}
var unique = std.AutoHashMap(std.meta.Tuple(&.{ i32, i32, i32, i32 }), void).init(allocator);
errdefer unique.deinit();
const width: i32 = @intCast(grid.items[0].len);
while (y >= 0 and y < grid.items.len and x >= 0 and x < grid.items[@intCast(y)].len) {
if (!history[@intCast(y * width + x)] and grid.items[@intCast(y)][@intCast(x)] != '#') {
try unique.put(.{ x, y, dirx, diry }, {});
history[@intCast(y * width + x)] = true;
}
if (grid.items[@intCast(y)][@intCast(x)] == '#') {
x -= dirx;
y -= diry;
const temp = dirx;
dirx = -diry;
diry = temp;
}
x += dirx;
y += diry;
}
return unique;
}
fn part1(grid: *std.ArrayList([]u8), startx: i32, starty: i32, allocator: std.mem.Allocator) !void {
var locs = try locations(grid, startx, starty, allocator);
defer locs.deinit();
print("{d}\n", .{locs.count()});
}
//----------------------------PART 2---------------------------------------------
fn directionToIndex(dirx: i32, diry: i32) i32 {
if (dirx == 0 and diry == -1) {
return 0;
} else if (dirx == 1 and diry == 0) {
return 1;
} else if (dirx == 0 and diry == 1) {
return 2;
} else {
return 3;
}
}
fn part2(grid: *std.ArrayList([]u8), startx: i32, starty: i32, allocator: std.mem.Allocator) !void {
var locs = try locations(grid, startx, starty, allocator);
defer locs.deinit();
var total: usize = 0;
var iterator = locs.keyIterator();
var history = try allocator.alloc(bool, grid.items.len * grid.items[0].len * 4);
defer allocator.free(history);
const width: i32 = @intCast(grid.items[0].len);
while (iterator.next()) |location| {
grid.items[@intCast(location[1])][@intCast(location[0])] = '#';
var dirx: i32 = location[2];
var diry: i32 = location[3];
var x = location[0];
var y = location[1];
for (history) |*elem| {
elem.* = false;
}
while (y >= 0 and y < grid.items.len and x >= 0 and x < grid.items[@intCast(y)].len) {
const index = y * width * 4 + x * 4 + directionToIndex(dirx, diry);
if (history[@intCast(index)]) {
total += 1;
break;
}
if (grid.items[@intCast(y)][@intCast(x)] == '#') {
x -= dirx;
y -= diry;
const temp = dirx;
dirx = -diry;
diry = temp;
}
history[@intCast(index)] = true;
x += dirx;
y += diry;
}
grid.items[@intCast(location[1])][@intCast(location[0])] = '.';
}
print("{d}\n", .{total});
}
|